Dimension reduction and parameter estimation for additive index models

نویسندگان

  • Lingyan Ruan
  • Ming Yuan
چکیده

In this paper, we consider simultaneous model selection and estimation for the additive index model. The additive index model is a class of structured nonparametric models that can be expressed as additive models of a set of unknown linear transformation of the original predictor variables. We introduce a penalized least squares estimator and discuss how it can be efficiently computed in practice. Both theoretical and empirical properties of the estimate are presented to demonstrate its merits. Extensions to more general prediction framework are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function

This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension red...

متن کامل

Subspace approach for two-dimensional parameter estimation of multiple damped sinusoids

In this paper, we tackle the two-dimensional (2-D) parameter estimation problem for a sum of K ≥ 2 real/complex damped sinusoids in additive white Gaussian noise. According to the rank-K property of the 2-D noise-free data matrix, the damping factor and frequency information is contained in the K dominant left and right singular vectors. Using the sinusoidal linear prediction property of these ...

متن کامل

Reviewing the harvest index estimation in crop modeling

H Harvest index (HI), ratio of seed yield to aboveground dry matter, is a very important parameter for estimating seed yield in several crop models. In this study, the importance, definition, variability and estimation methods of HI in crop models were discussed. HI estimation methods are categorized into two groups including: (i) complex methods that estimate HI from the beginning of seed gro...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Title Estimation of the Effective Dimension Reduction (edr) Space

Description The library contains R-functions to estimate the effective dimension reduction space in multi-index regression models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010